Peculiar Characteristics of Amplification and Noise for Intensity Modulated Light in Semiconductor Optical Amplifier
نویسندگان
چکیده
SUMMARY Amplification characteristics of the signal and the noise in the semiconductor optical amplifier (SOA), without facet mirrors for the intensity modulated light, are theoretically analyzed and experimentally confirmed. We have found that the amplification factor of the temporarily varying intensity component is smaller than that of the continuous wave (CW) component, but increases up to that of the CW component in the high frequency region in the SOA. These properties are very peculiar in the SOA, which is not shown in conventional electronic devices and semiconductor lasers. Therefore, the relative intensity noise (RIN), which is defined as ratio of the square value of the intensity fluctuation to that of the CW power can be improved by the amplification by the SOA. On the other hand, the signal to the noise ratio (S/N ratio) defined for ratio of the square value of the modulated signal power to that of the intensity fluctuation have both cases of the degradation and the improvement by the amplification depending on combination of the modulation and the noise frequencies. Experimental confirmations of these peculiar characteristics are also demonstrated.
منابع مشابه
Simulation and Analysis the Performance of 3970 Km DWDM Transmission Link Employing Optimized Semiconductor Optical Amplifiers
In this paper first we try to analysis the behavior ofthe SOAs in the optical networks and then have proposed anumerical simple model to simulate the behavior of thesemiconductor optical amplifiers. After that by employing thismodel as inline amplifier for a DWDM optical system, we havesimulated the transmission of 10 channels with bit rate 10 Gb/sup to distance 3970 km with RZ-DPSK modulation ...
متن کاملSpectral Broadening of Stochastic Light Intensity-Smoothed by a Saturated Semiconductor Optical Amplifier
We present calculations of the intensity smoothing of stochastic light by a semiconductor optical amplifier (SOA). We predict spectral changes of the light that are due to amplitudeto-phase coupling in the gain medium. The intensity smoothing of noisy optical signals with an SOA carries a penalty of spectral broadening (increased phase noise) that increases with increasing alpha parameter (line...
متن کاملModulation Response and Relative Intensity Noise Spectra in Quantum Cascade Lasers
Static properties, relatively intensity noise and intensity modulation response in quantum cascade lasers (QCLs) studied theoretically in this paper. The present rate equations model consists of three equations for the electrons density in the conduction band and one equation for photons density in cavity length. Two equations were derived to calculate the noise and modulation response. Calcula...
متن کاملErbium Doped Fiber Amplifiers: State Of Art
The field of optics has a drastic impact in the field of electronics and communication. With the rising need for higher data transfer rate, optical advancements have served this purpose. Optical amplifiers play a crucial role in the amplification of signal at regular intervals to avoid loss of data. Erbium doped fiber amplifiers (Erbium Doped Fiber Amplifier) carry out the amplification by stim...
متن کاملA Proposal for a New Method of Modeling of the Quantum Dot Semiconductor Optical Amplifiers
With the advancement of nanoscale semiconductor technology,semiconductor optical amplifiers are used to amplify and process all-optical signals. Inthis paper, with the aim of calculating the gain of quantum dot semiconductor opticalamplifier (QD-SOA), two groups of rate equations and the optical signal propagatingequation are used in the active layer of the device. For t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEICE Transactions
دوره 97-C شماره
صفحات -
تاریخ انتشار 2014